viki90 Użytkownik Posty: 168 Rejestracja: 22 lut 2013, o 16:05 Płeć: Kobieta Lokalizacja: Polska Podziękował: 32 razy dzielniki zera Niech P będzie liczbą pierwszą. Obliczyć liczbę dzielników zera w pierścieniu: \(\displaystyle{ Z_{p^{2}}}\) ? yorgin Użytkownik Posty: 12762 Rejestracja: 14 paź 2006, o 12:09 Płeć: Mężczyzna Lokalizacja: Kraków Podziękował: 17 razy Pomógł: 3440 razy dzielniki zera Post autor: yorgin » 8 mar 2013, o 14:56 Niech \(\displaystyle{ a,b\in \ZZ_{p^2}}\) takie, że\(\displaystyle{ ab=0}\). W szczególności \(\displaystyle{ ab
D45 - zbiór dzielników liczby 45. D45 = {1, 3, 5, 9, 15, 45} Liczba 45 ma 6 dzielników. Jest ona liczbą złożoną. D13 - zbiór dzielników liczby 13. D13 = {1, 13} Liczba 13 ma 2 dzielniki. Jest ona liczbą pierwszą. Liczba pierwsza ma tylko dwa dzielniki (1 i samą siebie) Liczba złożona ma więcej niż dwa dzielniki.
fidget Użytkownik Posty: 221 Rejestracja: 23 cze 2011, o 22:17 Płeć: Mężczyzna Lokalizacja: dev/null Podziękował: 65 razy Dzielniki liczby Ile jest liczb naturalnych, które są dzielnikami liczby 10010? Wypisałem wszystkie dzielniki, ale to nie wszystko. Dlaczego? "Nie rozumiem logiki tego zadania." miodzio1988 Dzielniki liczby Post autor: miodzio1988 » 16 sty 2012, o 22:39 Musisz policzyc ile tych liczb jest fidget Użytkownik Posty: 221 Rejestracja: 23 cze 2011, o 22:17 Płeć: Mężczyzna Lokalizacja: dev/null Podziękował: 65 razy Dzielniki liczby Post autor: fidget » 16 sty 2012, o 22:50 2, 5, 7, 11, 13 -> 5 dzielników. Zadanie sugeruje jednak inną odpowiedź: 32. Ponadto użyta została liczba Newtona. Nie rozumiem sensu, logiki tego zadania. Nie potrafię przeczytać go ze zrozumieniem. szw1710 Dzielniki liczby Post autor: szw1710 » 16 sty 2012, o 22:53 No więc wyznacz wszystkie iloczyny tych dzielników. Podajesz tylko dzielniki pierwsze. Przykładowo 35 też jest dzielnikiem. Majeskas Użytkownik Posty: 1456 Rejestracja: 14 gru 2007, o 14:36 Płeć: Mężczyzna Lokalizacja: Warszawa Podziękował: 49 razy Pomógł: 198 razy Dzielniki liczby Post autor: Majeskas » 16 sty 2012, o 23:15 Jest znacznie prostszy sposób na obliczanie ilości dzielników danej liczby. Każda liczba naturalna ma jednoznaczny (z dokładnością do kolejności czynników) rozkład na czynniki pierwsze. \(\displaystyle{ n=p_1^{\alpha_1}p_2^{\alpha_2}\ldots p_m^{\alpha_m}}\) Każdy dzielnik \(\displaystyle{ n}\) jest postaci \(\displaystyle{ p_1^{\beta_1}p_2^{\beta_2}\ldots p_m^{\beta_m}}\), gdzie \(\displaystyle{ \beta_i\in\left\{ 0,1,\ldots,\alpha_i\right\}}\) W takim razie dzielników jest tyle ile możliwych ustawień wykładników \(\displaystyle{ \beta_i}\): \(\displaystyle{ (\alpha_1+1)(\alpha_2+1)\ldots(\alpha_m+1)}\) szw1710 Dzielniki liczby Post autor: szw1710 » 16 sty 2012, o 23:16 Owszem. Jednak w sytuacji zmęczenia kij i młotek są najlepszymi narzędziami
MRFE0bL. t2d3j7lvmh.pages.dev/134t2d3j7lvmh.pages.dev/388t2d3j7lvmh.pages.dev/282t2d3j7lvmh.pages.dev/185t2d3j7lvmh.pages.dev/123t2d3j7lvmh.pages.dev/326t2d3j7lvmh.pages.dev/142t2d3j7lvmh.pages.dev/63t2d3j7lvmh.pages.dev/29
dzielniki liczby 14 które są dzielnikami liczby 42